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Abstract

A stability analysis is conducted of an autonomous single-degree-of-freedom system damped with negative viscous

damping and a displacement-dependent Coulomb friction force. The geometry of the dry friction damping element yields a

friction force that grows linearly with the system displacement. The most direct application of this system is in the study of

a turbomachinery blade with shroud interfaces designed to achieve this geometry. Recent studies have shown that the

damping of systems with this type of displacement-dependent dry friction force resembles linear structural damping and

suggests that this arrangement may be an effective means of flutter suppression in these turbine and fan blade applications.

For this study, the inclusion of negative viscous damping is used in order to approximate destabilizing aerodynamic forces.

An exact analysis is conducted to determine the stability of this autonomous system. Results show that energy losses from

the displacement-dependent dry friction damper are large enough to achieve local and even global stability under certain

conditions.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

In this paper, an analysis is performed to determine the stability conditions of a beam-like structure with a
displacement-dependent dry friction damper attached. The geometry of the dry friction damping element
yields a normal force across the friction interface that increases linearly with the transverse beam displacement
due to an inclined plane or ‘‘ramp’’ configuration. Such frictional systems, often termed ‘‘linear-Coulomb-
damped’’ systems have been studied by a number of authors [1–6]. The primary consideration of this paper is
the effectiveness of this type of friction damping to counter aeroelastic instabilities such as flutter. Perhaps the
most direct application of this system is in the study of a turbomachinery blade with shroud interfaces
properly designed to affect displacement-dependent normal loads on the frictional interfaces.
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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The suppression of flutter through use of dry friction damping has received considerable attention in the
past. Due to the nonlinear characteristics of dry friction, the standard practice is to keep both the friction
model and the aerodynamic model as simple as possible. For example, Sinha and Griffin [7] and Ferri and
Dowell [8] used constant-magnitude normal loads and negative viscous damping to model the destabilizing
aerodynamic forces present in turbine blades. Both studies showed that it was possible to create domains of
stability about the origin, but that sufficiently large disturbances could always lead to unbounded response.
The reason for this is that the energy dissipation from a frictional interface with constant normal loads grows
linearly with slip displacement amplitudes. Conversely, the energy input from negative viscous damping grows
like the square of the slip displacement amplitude. Consequently, there is at best only a limited domain over
which the dry friction damper can effectively suppress flutter.

When the friction forces are allowed to increase linearly with the slip displacement, the energy loss from the
frictional interface also grows like the square of the slip displacement amplitude. In that respect, the damping
supplied from a liner-Coulomb-damping element resembles linear structural damping. Linear structural
damping is often modeled by a complex-stiffness term. The merits and weaknesses of this so-called
Kimball– Lovell complex-stiffness model have been discussed by several authors [9–11]. While adequate for the
case of harmonic excitation, a nonlinear damping model is required in the case of transient response. The
damping law must produce a damping force that is proportional to displacement, but 1801 out of phase with
the slip velocity. This is exactly the case with linear-Coulomb friction in the case of zero preload. (As discussed
in this paper, the presence of preload presents a number of significant differences.) Thus, one of the interesting
aspects of this work is a careful examination of the ability of positive ‘‘linear structural damping’’ to overcome
‘‘negative viscous damping.’’ In this way, the work is closely related to the use of complex stiffnesses in the
determination of flutter boundaries in aeroelasticity; see, for example, descriptions of the ‘‘V-g’’ method in the
texts of Dowell et al. [12] and Bisplinghoff and Ashley [13].

Negative viscous damping is often used to model destabilizing aerodynamic forces, which are in-phase with
velocity. Although crude, the validity of this simplification has been examined by several authors. For
example, Sinha et al. [14] used an accurate aerodynamic model in the study of torsional blade flutter
suppression through friction damping. Using constant normal forces and a frequency-domain analysis, their
results showed good qualitative agreement with earlier work using negative viscous damping. In Ref. [15],
Whiteman and Ferri studied the suppression of coupled bending-torsion flutter using linear-Coulomb
damping. Their study used a relatively sophisticated state-variable model of aerodynamics, coupled to a two-
degree-of-freedom blade cross-sectional model. Again, the results were qualitatively similar to those found
using negative viscous damping. In addition, the study confirmed that linear-Coulomb damping could
suppress flutter over a much wider range of initial conditions than a system with constant normal forces. Due
to the complexity of the model, however, it was not possible to gain much insight into the nonlinear dynamics
underlying the observed behavior. The goal of the present paper is to simplify the model and then examine the
dynamics of the system in detail.

In the following section, the simplified nondimensional equations of motion are developed and shown to be
piecewise-linear in nature. This piecewise-linear structure is exploited to develop exact solutions for systems
with and without preload. As discussed in the review article by Ferri [16], the use of exact solutions in dry
friction-damped systems has been used effectively by a number of authors. Natsiavas, for example, has studied
a variety of piecwise-linear systems using this approach; see, for example [17,18]. Particularly relevant to the
present work is that of Shaw [19], where a system with constant normal loads was studied under the influence
of harmonic excitation. Shaw considered both positive and negative viscous damping. Caughey and
Vijayaraghavan [10] studied the free and forced response of a linear-Coulomb-damped system without viscous
damping. Their study showed that the ratios of successive peak displacements in a free response was equal to a
constant, just as in the case of viscous damping. Beucke and Kelly [1] extended this analysis to systems that
had linear-Coulomb friction and positive viscous damping. Importantly, they also included a preload friction
component that was omitted from the model used by Caughey and Vijayaraghavan. Beucke and Kelly
compared various equivalent linear damping approximations against their exact solutions.

In a later study, Inaudi et al. [20] generalized the linear-Coulomb damping model to include all nonlinear
systems that are piecewise linear in a finite number of cones in the state space. Such systems were shown to be
homogeneous of order one. This means that if x(t) is a solution to the nonlinear governing equation with initial
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condition x0 and forcing w(t), then ax(t) is the response solution corresponding to the scaled initial condition
and forcing, ax0 and aw(t), respectively. Their study used linear-Coulomb-damped systems as an example, but
did not consider preload, which destroys the homogeneity property. It is worth noting that their study also
used an example of semi-active viscous damping, but did not include viscous damping in their linear-
Coulomb-damped model.

In this paper, the combined influence of frictional preload and viscous damping is explicitly considered.
While the emphasis of the study is stability of free response under the influence of negative viscous damping, the
analytical results hold for negative and positive viscous damping. Also, the cases of underdamped, critically
damped, and overdamped systems are considered. The effectiveness of linear-Coulomb friction in stabilizing
such systems is presented in Section 4 for a wide range of system parameters. Conclusions are presented in
Section 5.
2. Model development

Fig. 1 shows the model to be studied. The clamped–free beam is assumed to be uniform in cross-section,
having mass per unit length, m, elastic modulus E, and cross-sectional area moment, I. The equations of
motion for such a system have been developed in Refs. [4,5]. Here a brief review is presented.

The beam flexural displacement w(x,t) can be approximated as

wðx; tÞ ¼
XM
i¼1

ziðtÞfiðxÞ, (1)

where x is the spatial coordinate measured from the clamped end of the beam, t is time, M is the number of
assumed modes, and zi(t) is the modal amplitude of the ith assumed mode for the beam in flexure, fi(x).
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Fig. 1. (a) Flexural beam with transverse friction damper attached and (b) force components.
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The assumed modes are taken to be the exact fixed–free eigenmodes of a uniform clamped–free beam:

fi xð Þ ¼
1ffiffiffiffiffiffiffi
mL
p cosh

bix

L
� cos

bix

L
�

cosh bi þ cos bi

sinh bi þ sin bi

� �
sinh

bix

L
� sin

bix

L

� �� �
, (2)

where bi is the ith root of the characteristic equation:

cosh b cos bþ 1 ¼ 0.

For definiteness, it is assumed that the units of the modal amplitudes, zi(t), are length, and that the assumed
modes, fi(x), are dimensionless. The scaling factor used in Eq. (2) serves to normalize the assumed modes,
thereby leading to unit-valued modal masses.

The friction-damped beam of Fig. 1a can be treated as a uniform linear beam with a point force FD exerted
by the friction damper at the coordinate x ¼ xD. The governing equations for such a system are given by the
well-known system of modal equations

mi €zi þ 2zioi _zi þ o2
i zi

� �
¼ F DfiðxDÞ for i ¼ 1;M, (3)

where mi, and oi are the modal mass and the natural frequency, respectively, for the ith assumed beam mode.
The model also provides for the presence of viscous damping in the form of modal damping ratios, zi.

Fig. 1b shows the force components Nx and Ny caused by the spring and roller. The transverse force Nx is
the normal force perpendicular to the sliding interface and is given by

Nx ¼ N0 þ K wdj j tan g, (4)

where wd is the transverse displacement of the beam (and, thus, of the attached friction damper) at the location
x ¼ xD:

wd ¼
XM
i¼1

ziðtÞfiðxDÞ. (5)

Note that Nx is comprised of two parts: the first part, N0, is the ‘‘preload’’ present in the spring while the
second part grows linearly with the damper displacement due to the ramp angle g. Referring to Fig. 1b, the
tangential component of the roller force, Ny, is given by

Ny ¼ Nx tan gð Þsgn wdð Þ, (6)

where the signum function is given by sgnðwdÞ ¼ þ1, 0, and �1 for wd greater than, equal to, or less than zero,
respectively.

The total upward force exerted by the friction element on the beam at location x ¼ xD is given by

FD ¼ �mNx sgnð _wd Þ �Ny. (7)

The first part of FD is the Coulomb friction force having magnitude mNx, where m is the sliding coefficient of
friction (assumed to be equal to the static coefficient of friction) and Nx is the normal force across the sliding
interface. The second part of FD is the tangential component of the roller force, Ny. As seen in Eq. (6), Ny is
small for small ramp angles. However, for larger ramp angles, this force has a significant effect on the
equivalent stiffness of the system and on the occurrence of sticking of the frictional interface.

Although Eq. (3) appears to be uncoupled, they are coupled through the friction damping force since, as
seen in Eq. (5), the displacement of the beam at location x ¼ xD depends on all M assumed modes. For the
case of a single beam mode model, M ¼ 1, the equation of motion is given explicitly by the second-order
equation

mn €znðtÞ þ 2znon _znðtÞ þ o2
nznðtÞ

� �
¼ � N0 þ K tan gfD znðtÞ

		 		
 �
fD tan g sgnðznðtÞÞ

� 
� m½N0 þ K tan gfD znðtÞ

		 		�fD sgnð_znðtÞÞ, ð8Þ

where the subscript ‘‘n’’ designates quantities corresponding to the nth assumed beam mode. (Note that,
without loss of generality, use has been made of the assumption that fD ¼ fnðxDÞ40.)

Even for an unforced model described by a single beam mode, it is seen that the governing equation involves
a large number of physical parameters. The equation can be simplified somewhat if one introduces the
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following parameters:

k1 ¼
Kf2

D

mno2
n

; n0 ¼
N0fD

mno2
n

; t ¼ ont

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ k1 tan2 g

q
; Z ¼

�znffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ k1 tan2 g

p
R ¼

tan g
m

; d ¼
mk1 tan g

1þ k1 tan2 g
; f 0 ¼

mn0

ð1þ k1 tan2 gÞ
. ð9Þ

Making use of Eq. (9) and noting that |zn| sgn (zn) ¼ zn, the unforced Eq. (8) can be written as

z00 � 2Z z0 þ zþ d zj j sgnðz0Þ þ f 0 sgnðz
0Þ þ f 0R sgnðzÞ ¼ 0, (10)

where derivatives with respect to nondimensional time t are denoted by a prime and the subscripts on z(t) have
been suppressed for simplicity. Note that since the primary concern of the present work is the stability and free
response of the system under the influence of negative viscous damping, the sign of the viscous damping term
has been negated in Eq. (10).

3. Analysis

3.1. Sticking criteria

Since system (10) is unforced and assumes a single beam mode to represent flexure, if sticking occurs, the
beam will remain stuck for all subsequent times. As developed in Ref. [21], sticking is easily determined by
examining the sign of the acceleration for very small velocities. Let a+ ¼ z00 for z0 ¼ 0+ and let a� ¼ z00 for
z0 ¼ 0�:

aþ ¼ � 1þ dð Þz� f 0 � f 0R, (11a)

a� ¼ � 1� dð Þzþ f 0 � f 0R. (11b)

Consider a response trajectory that hits the z-axis with displacement z. If for this value of z, a+p0 while
a�X0, then the system will stick and remain stuck for all time after the first occurrence of zero velocity.
Determination of the sticking range is simplified if one notes that a+o0 for all positive z, and a�40 for all
negative z. Furthermore, the sticking ranges should be symmetric for positive and negative values of z.

The occurrence of sticking is critically dependent on two positive dimensionless constants, R and d. The
ratio R is important in static ‘‘wedge-type’’ problems, where Ro1 is known to be necessary for sticking to
occur. The parameter d can be interpreted as a ratio of the friction force increase (above that due to the
preload alone) to the total elastic restoring force. Although not readily apparent, the parameters R and d are
related by an inequality constraint:

Rd ¼
tan g
m

mk1 tan g
1þ k1 tan2 g

¼
k1 tan

2 g
1þ k1 tan2 g

o1. (12)

As long as this constraint is satisfied, it is always possible to find a set of physical system parameters (such as
m, E, L, K, etc.) that give a particular set of dimensionless constants Z, d, R, and f0. Depending on the values of
R and d, there are three sticking cases:

Ro1 and do1) sticking occurs for zj jozthreshold ¼ f 0

1� R

1� d
, (13a)

Ro1 and d41) sticking occurs for all z, (13b)

R41 and do1) no sticking possible for any z. (13c)

The case where R41 and d41 is not physically possible due to inequality (12). However, for completeness, the
corresponding sticking region would be

R41 and d41) sticking occurs for zj j4f 0

1� R

1� d
. (13d)
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The regions are shown pictorially in Fig. 2. Starting near the origin in the R�d parameter space, zthreshold
diminishes as R is increased. At R ¼ 1, the sticking threshold along the z-axis shrinks to zero. Conversely,
starting near the origin in the R�d parameter space, zthreshold increases as d is increased. At d ¼ 1, the sticking
threshold grows to include the entire z-axis.

Not surprisingly, Ro1 (i.e., m4 tan g) is a necessary condition for sticking to be possible. Conversely, d41
is a necessary condition for sticking at large displacements. It is also important to note that in the case of zero
preload, f0 ¼ n0 ¼ 0, the system sticks for all z when d41 and remains stick-free otherwise.

3.2. Free response

An exact solution can be constructed starting from the initial conditions zð0Þ ¼ z040 and z0ð0Þ ¼ 0. From
this initial condition, the trajectory traverses the fourth quadrant where the linear governing equation can be
written as

z00 � 2Zz0 þ ð1� dÞz� f 0ð1� RÞ ¼ 0. (14)

As discussed above, the system remains stuck at z ¼ z0 if d41. Therefore, we assume do1 in the sequel. Using
subscripts suggestive of the quadrant in which the equation applies, we can rewrite Eq. (14) in the form:

z00 � 2z4O4z
0 þ O2

4z ¼ O2
4c4, (15)

where

O2
4 ¼ ð1� dÞ; z4 ¼ Z=O4; and c4 ¼ f 0ð1� RÞ=ð1� dÞ.

Note that c4 has the same value as zthreshold, which appears in the definition of the sticking regions (13a).
Assuming that z4

		 		a1, the exact solution to this equation is given by

z tð Þ ¼
l1el2t � l2el1t

 �

l1 � l2
z0 � c4ð Þ þ c4, (16)

z0 tð Þ ¼
l1l2ð Þ

l1 � l2
el2t � el1t

 �

z0 � c4ð Þ, (17)

where

l1 ¼ z4O4 � O4

ffiffiffiffiffiffiffiffiffiffiffiffiffi
z24 � 1

q
; l2 ¼ z4O4 þ O4

ffiffiffiffiffiffiffiffiffiffiffiffiffi
z24 � 1

q
. (18a,b)
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Note that Eqs. (16) and (17) apply to the case of real or complex values for l1 and l2; however, they do not
apply to the case of critical damping, |z4| ¼ 1, which results in real repeated roots, l ¼ l1 ¼ l2. The solution in
this case can be written as

z ¼ ðz0 � c4Þ ð1� ltÞelt þ c4, (19)

z0 ¼ �ðz0 � c4Þl
2telt. (20)

Given a particular initial displacement z0, three possible scenarios can develop as shown in Fig. 3.
(1)
 The first scenario is that z0ozthreshold. In this case, no motion takes place.

(2)
 The second scenario is that the displacement decreases but never reaches zero before permanent sticking

takes place. In this case, the trajectory begins by entering Quadrant IV, but terminates on the positive
z-axis. See, for example, the case A in Fig. 3, with initial displacement equal to zA.
(3)
 The third and more interesting scenario is that the trajectory passes through Quadrant IV and into
Quadrant III. This is the situation pertaining to the initial displacement zC in Fig. 3. Assume that the
trajectory passes into the third quadrant when t ¼ t1, at which time z(t1) ¼ 0 and z0ðt1Þ ¼ v1. The
determination of t1 requires the solution of a transcendental equation, namely the equation formed by
setting the right-hand side of Eq. (16) equal to zero. (In the special case where c4 is equal to zero, it is
possible to obtain a closed-form solution for t1 and v1. This case will be treated separately below.)
It is seen that there is a limiting value of z0 such that reaching Quadrant III is ensured. This point, labeled as
point zB in Fig. 3, can be found in a closed form as follows. First, recognize that a trajectory originating at the
point zB on the +z-axis will terminate at the origin. Thus, we can utilize a time-reversed solution to Eq. (14).
Define p ¼ t1�t. Then the general solution to Eq. (14) can be written as

zðpÞ ¼ Ael1ðt1�pÞ þ Bel2ðt1�pÞ þ c4 ¼ Âe�l1p þ B̂e�l2p þ c4. (21)

The (possibly) complex-valued undetermined constants Â and B̂ can be found by applying the initial
conditions z(p ¼ 0) ¼ 0 and dzðp ¼ 0Þ=ðdpÞ ¼ 0. This gives the solution

zðpÞ ¼
c4

l1 � l2
l2e�l1p � l1e�l2p

 �

þ c4, (22)

dzðpÞ

dp
¼

c4l1l2
l1 � l2

e�l2p � e�l1p

 �

. (23)

Judging from Eq. (23), we see that in order for dz/dp to be zero for some p40, it is necessary that the roots be

complex-valued; i.e., z4
		 		o1. Let l1 ¼ �z4O4 � iO4

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z24

q
¼ �z4O4 � iod4 ¼ l�2, where od4 ¼ O4

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z24

q
is

the damped natural frequency in Quadrant IV. The first value of p40 for which the velocity equals zero is
Sticking
zone

-zthreshold +zthreshold

z’

z

zA zB zC

case A

case B

case C
Quadrant IVQuadrant III

v1
 1�

Fig. 3. Response possibilities in Quadrant IV.
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simply p1 ¼ p=od4. The value of displacement at p ¼ p1 is given by

zB ¼ zðp1Þ ¼
c4

l1 � l2
l2e�l1p1 � l1e�l2p1

 �

þ c4 ¼ c4 1þ e�z4O4p=od4

� �
,

zB ¼ c4 1þ e�z4p=
ffiffiffiffiffiffiffiffi
1�z24
p� �

. ð24Þ

Note that as z4 ! 1, zB ! c4. For z441, the point (zthreshold, 0) takes on the characteristics of an unstable
node, with trajectories slowly approaching it as t!�1.

For z04zB, the trajectory is guaranteed to reach the third quadrant at some time t1, having zero
displacement and having a velocity of v1. Once in the third quadrant, the following governing equation
applies:

z00 � 2Zz0 þ ð1þ dÞz� f 0ð1þ RÞ ¼ 0; t4t1. (25)

As before, we introduce the following notation to simplify the form of the solution:

O2
3 ¼ ð1þ dÞ; z3 ¼ Z=O3; and c3 ¼ f 0ð1þ RÞ=ð1þ dÞ.

This yields

z00 � 2z3O3z
0 þ O2

3z ¼ O2
3c3. (26)

Assuming that z3
		 		a1, the general solution to Eq. (26) can be written as

zðtÞ ¼
1

s4 � s3
� v1 þ c3s4ð Þes3ðt�t1Þ þ v1 þ c3s3ð Þes4ðt�t1Þ
� 

þ c3, (27)

z0ðtÞ ¼
1

s4 � s3
�s3 v1 þ c3s4ð Þes3ðt�t1Þ þ s4 v1 þ c3s3ð Þes4ðt�t1Þ
� 

, (28)

where

s3 ¼ z3O3 � O3

ffiffiffiffiffiffiffiffiffiffiffiffiffi
z23 � 1

q
and s4 ¼ z3O3 þ O3

ffiffiffiffiffiffiffiffiffiffiffiffiffi
z23 � 1

q
. (29a,b)

It should be noted that, as for the solution presented above for Quadrant IV, the form given in Eqs. (27) and
(28) hold for both the case of complex roots and the case of real-distinct roots. In the case z3

		 		 ¼ 1,
s ¼ s3 ¼ s4, the critical-damping solution is required:

z ¼ c3ð1� esðt�t1ÞÞ þ ðv1 þ c3sÞðt� t1Þesðt�t1Þ, (30)

z0 ¼ v1 þ sðv1 þ c3sÞðt� t1Þ
� 

esðt�t1Þ. (31)

The time at which the trajectory moves into Quadrant II can be determined by setting (28) equal to zero.
Denoting this time as t2, one finds after some manipulation:

t2 ¼ t1 þ
ln s3 v1 þ c3s4ð Þð Þ= s4 v1 þ c3s3ð Þð Þ

 �

s4 � s3
. (32)

Note that care must be taken to ensure that a real-valued result for t2 exists and that it is greater than t1. If s3
and s4 are complex-valued, the magnitude of the imaginary parts of s3 and s4 can be identified as the damped
natural frequency in Quadrant III, od3. The corresponding damped natural period would thus be given by
Td3 ¼ 2p=od3 and the solutions of Eq. (32) are separated by a time interval equal to Td3/2:

Dt ¼
Td3

2
¼

p
od3
¼

p

O3

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z23

q . (33)

Therefore, it may be necessary to add multiples of Dt to the numerical value found by means of expression (32)
until a value of t2 is found that is greater than t1. If s4 and s3 are real-valued and distinct, the situation is more
involved. Note from Eq. (29) above that if z341, the real roots will be ordered so that s44s340. An
inspection of Eq. (28) shows that the velocity will become positive if and only if the coefficient of es4ðt�t1Þ is
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positive. Thus, unless ðv1 þ c3s3Þ40, the trajectory will remain in Quadrant III with increasingly negative
velocity as t goes to infinity. It can be shown that the same condition applies for the case of z3

		 		 ¼ 1.
Provided that v1 and t2 exist, the corresponding displacement, denoted z2, may be obtained by evaluating

Eq. (27) or Eq. (30) at t ¼ t2. The mapping from z040 to z2o0 may be considered to be a nonlinear function
of the starting value:

z2 ¼ Pðz0Þ. (34)

Due to the fact that the piecewise-linear system dynamics in Quadrants II and I are identical to those in
Quadrants IV and III, respectively, it is clear that the mapping P can also be used in the upper half of the
phase plane; i.e., mapping displacements on the negative z-axis onto displacements on the positive z-axis.
When z2/z0o�1, the amplitude of the oscillations grows with time. When z2/z04�1, the amplitude of the
oscillations decreases with time. The case where z2/z0 ¼ �1 is shown in Fig. 4. In this case, the trajectory
oscillates indefinitely with period T ¼ 2t2. The closed orbit separates the phase plane into an interior region
within which trajectories are attracted to a zone of equilibria on the z-axis given by the sticking relations (13).
In the case where no sticking is possible (R41), the origin becomes a stable attractor for all trajectories
originating within the bounding orbit. Trajectories originating outside of the bounding orbit will grow
unbounded with time unless or until they intersect the z-axis in one of the sticking regions given in Eqs. (13).
Note that the equilibrium orbit is an unstable limit cycle. Thus, a relatively easy way to check its size and
shape is by integrating the original differential equation (10) backwards in time. Alternatively, an approximate
solution may be sought using the harmonic-balance (HB) procedure.

3.3. Harmonic balance

Since Eq. (10) is autonomous, we can assume a solution for displacement of the form z ¼ Z cosðotÞ. It can
be shown that the fundamental-frequency approximations of the nonlinear terms of Eq. (10) are given by

sgn ðZ cosðotÞÞ � ð4=pÞ cosðotÞ; sgnð�Zo sinðotÞÞ � �ð4=pÞ sinðotÞ, (35a,b)

Z cosðotÞ
		 		sgnð�Zo sinðotÞÞ � �ð2=pÞZ sinðotÞ. (35c)

Note that these approximations assume Z40 and o40. Using the harmonic approximation for z(t) and its
derivatives as well as the approximations in Eq. (35), we can equate the cosine and sine components in Eq. (10)
separately. Balancing the terms involving cos(ot) yields:

�Zo2 þ Z þ ð4=pÞf 0R ¼ 0. (36)
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Balancing the terms involving sin(ot), we obtain:

þ2ZoZ � ð2=pÞdZ � ð4=pÞf 0 ¼ 0. (37)

The frequency o can be eliminated between the two equations, yielding a quadratic equation for the amplitude
Z:

aZ2 þ bZ þ c ¼ 0, (38)

where

a ¼ 4 Z2 � ðd=pÞ2

 �

; b ¼ 16f 0=p

 �

RZ2 � d=p

 �

; and c ¼ �ð4f 0=pÞ
2. (39a,b,c)

The fact that co0 can be used to determine the conditions under which positive solutions to Eq. (38) are
possible. If aX0, the quadratic equation will always have one positive real root and one negative real root,
regardless of the value of b. [Note that the situation of a ¼ b ¼ 0 results in an inconsistency.] When ao0, the
roots to Eq. (38) are complex-valued unless b244ac; i.e.,

16f 0=p

 �2

RZ2 � d=p

 �2

44 � 4 Z2 � ðd=pÞ2

 �

� ð4f 0=pÞ
2. (39)

For f 0a0, this implies

RZ2 � d=p

 �2

4 Z2 � ðd=pÞ2

 �

) R2Z4 � 2Rd=p� 1

 �

Z240 or R2Z24 2Rd=p� 1

 �

. (40)

By inequality (12), however, Rdo1, so the situation of b244ac is not physically possible in the case ao0. As
a! 0þ, the positive root of Eq. (38) tends to infinity. Thus, as d=p! Z, the amplitude of the bounding orbit
should approach infinity, which implies global stability.

3.4. Zero-preload case

In the special case where n0 is zero, the analysis above can be simplified considerably. Note that if n0 ¼ 0,
then c3 ¼ c4 ¼ 0 in the expressions above. The first consequence of this situation may be seen in the sticking
conditions (13). With n0 ¼ 0, the sticking conditions depend only on d; if do1, no sticking is possible along the
z-axis and if d41, sticking will occur everywhere along the z-axis.

With c4 ¼ 0, it is possible to find a closed-form solution for t1. For the case of z4
		 		a1, t1 is given by

t1 ¼
ln l1=l2

 �
l1 � l2

. (41)

As before, in the case of z4
		 		o1 it may be necessary to adjust the obtained value of t1 by adding multiples of

Td4/2 ¼ p/(2*imag(l2)) until a positive value of t1 is obtained. When z4
		 		 ¼ 1, Eq. (19) reveals that

t1 ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffi
1� d
p

. With c4 ¼ 0, Eq. (17) or Eq. (20) shows that v1 is a linear function of z0 of the form

v1 ¼ L4z0, (42)

where L4 is the linear mapping from the +z-axis to the �z0-axis through Quadrant IV. For z4
		 		a1, it is given

by

L4 ¼
l1l2ð Þ

l1 � l2
el2t1 � el1t1

 �

. (43)

Eq. (24) shows that zB ¼ 0 which implies that all trajectories originating on the +z-axis are guaranteed to
enter Quadrant III. The time t2 at which the trajectories leave Quadrant III is still given by Eq. (32). With
c3 ¼ 0, Eq. (32) simplifies to

t2 ¼ t1 þ
ln s3=s4

 �
s4 � s3

. (44)

Referring to Eq. (29a,b), it is seen that in the case of z3
		 		X1, s3 and s4 are real-valued and ordered so that

s4Xs3. Therefore, no real value of t24t1 will exist unless z3
		 		o1. (Recall that, even for the underdamped
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case, it may be necessary to add multiples of Td3/2 to the value obtained from Eq. (44) in order to render a
value of t24t1.)

Inspection of Eqs. (27) and (30) above with c3 ¼ 0 shows that z2 is a linear function of v1 of the form

z2 ¼ L3v1, (45)

where L3 is the linear mapping from the �z0-axis to the �z-axis through Quadrant III. For the case z3
		 		a1, L3

is given by

L3 ¼
1

s4 � s3
es4ðt2�t1Þ � es3ðt2�t1Þ
� 

. (46)

Combining (43) and (46), the mapping from z0 to z2 is obtained as

z2 ¼ Pz0 ¼ L3L4z0. (47)

Due to the linearity of expression (47), it may be concluded that the stability of the phase-plane origin is not
dependent on the system’s initial state. If L3L4o�1, trajectories grow without bound regardless of initial
displacement z0. Conversely, if L3L44�1, trajectories diminish with time regardless of initial displacement z0.
If L3L4 ¼ �1, the origin takes on the characteristics of a center, with all values of z

0
giving rise to closed orbits.

This type of behavior is also evident in the HB solutions (36) and (37). When f0 ¼ 0, Eqs. (36) and (37) have no
solution unless o ¼ 1 and Z ¼ d=p. If these two conditions are met, the value of Z is arbitrary, consistent with
the attributes of a center.

In the general case of zero preload, it is seen that L3L4 depends only on the values of Z and d. Thus, the Z�d
parameter space can be partitioned into regions of instability (L3L4o�1) and regions of stability (L3L44�1).
Fig. 5 shows the boundary between these two regions, where L3L4 ¼ �1. Along this line, the system exhibits
center-type stability while combinations of Z and d below this curve give rise to globally asymptotic stability.
For comparison, the HB requirement for a center, Z ¼ d=p, is also shown. Note that there is a very good
agreement between the HB prediction and the exact solution except for relatively large values of d. This is to
be expected since, with f0 ¼ 0, d alone determines the size of the nonlinear term in Eq. (10).

As a further simplification, we can consider the case where the viscous damping term is identically zero.
Then, expression (47) reduces to

z2

z0
¼

ffiffiffiffiffiffiffiffiffiffiffi
1� d
1þ d

r
. (48)

Over a full cycle, the ratio of amplitudes is the square of the right-hand side, (1�d)/(1+d), which matches
the results of Caughey and Vijayaraghavan [10] and Inaudi et al. [20]. This ratio of amplitudes can be used to
0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

δ

η

Fig. 5. Stability diagram in Z�d parameter space. Solid line, exact boundary; dashed line, harmonic balance; dash–dot line, log decrement.
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determine an equivalent viscous damping ratio based on the log-decrement approach. Let (z)i be the peak
amplitude over the ith cycle of decaying response. Then

ln
zð Þi

zð Þiþ1

� �
¼ ln

1þ d
1� d

� �
¼ D ¼

2p zdffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2d

q ) zd ¼
Dffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4p2 þ D2
p , (49)

where zd is the equivalent viscous damping ratio based on matching the log-decrement of the friction-damped
system with that of a linear, underdamped single-degree-of-freedom system. Presumably, if zd4Z, the system
should be stable; the boundary where zd ¼ Z could thus be used to form another boundary line in the Z�d
parameter space. As seen in Fig. 5, this result is in excellent agreement with the exact solution and with the HB
result for small values of d. However, as d increases, the three results diverge. Over the entire range of d, the
HB result yields a conservative estimate of the stable region in the Z�d parameter space while the log-
decrement approach overpredicts the stable region.

4. Results

The size and shape of the bounding orbit is highly dependent on the system parameters. Interestingly, the
influence of f0 on the amplitude of the bounding orbit z0 is purely linear. This can be justified by an
examination of Eq. (10). Let ~zðtÞ be a bounding-orbit solution to Eq. (10) with starting displacement ~zð0Þ ¼ ~z0.
Then

~z00 � 2Z ~z0 þ ~zþ d ~zj jsgnð~z0Þ þ f 0 sgnð~z
0Þ þ f 0R sgnð~zÞ ¼ 0. (50)

It is obvious that a~zðtÞ satisfies the same equation with f0 replaced with af0. Thus, the effect of f0 is to increase
the amplitude of the bounding orbit by a simple scale factor. For this reason, one need only consider two
values of f0: f0 ¼ 0 and f0 ¼ 1.

Fig. 6 shows the bounding orbits for three different values of d. As d gets larger, the size of the bounding
orbit gets larger but becomes perceptibly less elliptical in shape. For d ¼ 0.1, the bounding orbit as derived
using the exact solution is compared against the HB prediction in Fig. 7. The good agreement between the HB
and exact solutions attests to the fact that for small-sized orbits (small stable regions), the exact solution is
well-approximated by an elliptical approximation such as HB. Fig. 8 shows the HB and exact solutions
compared over a single cycle of motion. While the phase of the HB solution is arbitrary, the figure still
demonstrates that there is a noticeable difference in the periods predicted by the two methods.

Fig. 9 shows a similar comparison for d ¼ 0.6. With the larger-sized bounding orbit, there is a very large
discrepancy between the HB and exact solutions.
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Fig. 6. Bounding orbits for various values of d; Z ¼ 0.25, R ¼ 0.2, f0 ¼ 1. Solid line, d ¼ 0.6; dashed line, d ¼ 0.5; dash–dot line, d ¼ 0.1.
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Fig. 7. Comparison of bounding orbit calculated using the exact solution and the harmonic-balance method. d ¼ 0.1, Z ¼ 0.25, R ¼ 0.2,

f0 ¼ 1. Solid line, exact; dashed line, harmonic balance.
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Fig. 8. Comparison of bounding orbit predictions in the time domain. d ¼ 0.1, Z ¼ 0.25, R ¼ 0.2, f0 ¼ 1. Solid line, exact; dashed line,

harmonic balance.
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The dependence of the bounding-orbit amplitude with d is shown in Fig. 10 for Z ¼ 0.1, R ¼ 0.2, and f0 ¼ 1.
Also shown in the figure is the HB prediction, which is fairly good. It is seen that the size of the stable region
increases with d-first gradually and then very sharply. In fact, for d ¼ 0.3107, the solution is infinite, and for
d40.3107, no solution for z0 exists. This curious fact can be explained by referring to the solution obtained for
the zero-preload case, n0 ¼ f0 ¼ 0. As the amplitude of the bounding solution becomes larger and larger, the
relative influence of the preload terms in Eq. (10) becomes smaller and smaller. In the limit of an infinite-
amplitude orbit, the f0 terms in Eq. (10) can be discarded with the resulting system being identical to that
governed by the zero-preload case. As Fig. 5 shows, a zero-preload system with Z ¼ 0.1 is unstable for
do0.3107; at d ¼ 0.3107, the origin becomes a neutrally stable center. For 0.3107odo1, the zero-preload
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Fig. 9. Comparison of bounding orbit calculated using the exact solution and the harmonic-balance method. d ¼ 0.6, Z ¼ 0.25, R ¼ 0.2,

f0 ¼ 1. Solid line, exact; dashed line, harmonic balance.
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Fig. 10. Dependence of bounding-orbit amplitude vs. d. Z ¼ 0.1, R ¼ 0.2, f0 ¼ 1. Solid line, exact; dashed line, harmonic balance. The

vertical line at d ¼ 0.3107 denotes the limiting value of d, beyond which no limit cycles exist.
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system is globally asymptotically stable. For the system with nonzero preload, the unstable limit cycle
disappears for d40.3107 and the system becomes globally stable, but not asymptotically so. Instead, the
system is ultimately bounded, with trajectories terminating somewhere along the z-axis between �zthreshold and
+zthreshold. A similar result is found for the case of higher negative viscous damping, Z ¼ 0.25. As seen in Fig.
11, the amplitude of the bounding orbit increases sharply as d approaches 0.7. At d ¼ 0.7293, which
corresponds exactly to the point in Fig. 5 for Z ¼ 0.25, the amplitude is infinite. Fig. 11 also shows that as d
increases, the agreement between the HB prediction and the exact solution deteriorates. As noted above, the
HB solution predicts an infinite-amplitude bounding orbit when a in Eq. (38) is zero. This occurs at
d ¼ pZ ¼ 0.7854. Since in reality the system attains global stability at d ¼ 0.7293, the HB prediction is
conservative.
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Fig. 11. Dependence of bounding-orbit amplitude vs. d. Z ¼ 0.25, R ¼ 0.2, f0 ¼ 1. Solid line, exact; dashed line, harmonic balance. The

vertical line at d ¼ 0.7293 denotes the limiting value of d, beyond which no limit cycles exist.
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Fig. 12. Bounding orbits for various values of Z; d ¼ 0.5, R ¼ 0.2, f0 ¼ 1. Solid line, Z ¼ 0.2; dashed line, Z ¼ 0.225; dash–dot line,

Z ¼ 0.25.
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The influence of Z on the size and shape of the bounding orbit is shown in Figs. 12–14. As Z is increased, the
system becomes less stable; therefore, the amplitude of the bounding orbit for the stable region decreases. As Z
decreases, Fig. 13 shows that the amplitude of the bounding orbit rises asymptotically to infinity. For d ¼ 0.5,
Fig. 5 shows that the zero-preload system has neutral stability at Z ¼ 0.1641. By contrast, the HB result
predicts Z ¼ d/p ¼ 0.1592. As Z increases, the amplitude of the bounding orbit gets smaller and smaller.
However, for z0ozthreshold, no solution can be found for the bounding orbit because the trajectory commences
from a terminally stuck position. In this case, zthreshold is equal to f0(1�R)/(1�d) ¼ 1.6 and z0 ¼ zthreshold at
Z ¼ 0.71. Fig. 14 shows a bounding orbit for Z ¼ 0.6. It is seen that the shape of the orbit becomes very
distorted as the amplitude approaches the limiting value of zthreshold ¼ 1.6. For Z ¼ 0.8, no bounding orbit
exists. However, as seen in Fig. 14, a domain of attraction for the sticking zone still exists. The boundary of the
domain is found by using time-reversed solutions starting from the edges of the sticking zone.
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Fig. 13. Dependence of bounding-orbit amplitude on Z. d ¼ 0.25, R ¼ 0.2, f0 ¼ 1. Solid line, exact; dashed line, harmonic balance.

The vertical line at Z ¼ 0.1641 denotes the limiting value of Z, below which no limit cycles exist.
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Fig. 14. Stability region for Z ¼ 0.6 (dashed) and Z ¼ 0.8 (solid). Sticking zone (plus signs) extends from �1.6 to +1.6 along the z-axis;

d ¼ 0.5, R ¼ 0.2, f0 ¼ 1.
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The dependence of the bounding-orbit amplitude on R is shown in Fig. 15. It is seen that the relationship is
nearly linear, but is not exactly so. It should be noted that the maximum value of R is limited by the value of d
as discussed in relation to Eq. (12). Thus, Ro1/d ¼ 2. It is seen that as R increases, the system becomes less
stable. This would tend to suggest that increasing the ramp angle g would have a destabilizing effect on the

system. However, as shown below, this is not so.
While the introduction of the dimensionless constants aids in the derivation of general solutions, it obscures

the role of certain physical parameters such as g. To determine the influence of g on the system stability, we
consider a physical system with parameters similar to those used in earlier studies [4,5]. From the parameter
values listed in Table 1, the following dimensionless constants are derived: k1 ¼ 2.7019, n0 ¼ 1.0790, m ¼ 0.5,
z1 ¼ �0.1. As g changes, the values of Z, d, R, and and f0 will all change as shown in Fig. 16. It is seen that R

and d are strongly dependent on g whereas Z and f0 are relatively constant.
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Fig. 15. Dependence of bounding-orbit amplitude on R. d ¼ 0.5, Z ¼ 0.25, f0 ¼ 1. Solid line, exact; dashed line, harmonic balance.

Table 1

Physical parameters and derived constants

Symbol Numerical value Units

m 0.6361 kg/m

E 7.30E+10 N/m2

I 1.33E�10 m4

L 0.3 m

N0 10,000 N

z1 �0.1

K 10,000 N/m

m 0.5

xD 0.2 m

m1 1 kg

fD 2.504

o1 152.3 rad/s
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Fig. 16. Variation of dimensionless constants with ramp angle g for k1 ¼ 2.7019, n0 ¼ 1.0790, m ¼ 0.5, z1 ¼ �0.1. Solid line, d; dashed
line, Z; dash–dot line, f0; dotted line, R.
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Fig. 17. Dependence of bounding-orbit amplitude on ramp angle g. Solid line, exact; dashed line, harmonic balance. The vertical line at

g ¼ 13.97701 denotes the limiting value of g, above which no limit cycles exist.
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Fig. 17 shows the variation of the bounding-orbit amplitude on ramp angle g. It is clearly seen that the effect
of g is similar to that of d; i.e., as g increases, the system becomes more stable as evidenced by larger bounding
orbits. Again, the presence of a finite value of g at which the amplitude of the bounding orbit goes to infinity is
observed. Beyond g ¼ 13.97701, the system is globally stable.
5. Conclusions

The free response and stability of a beam-like structure with a displacement-dependent dry friction damper
attached was studied. Negative viscous damping was used to simulate destabilizing aerodynamic forcing, but
the system was otherwise unforced. Using an exact solution for the piecewise-linear system, the conditions
under which the dry friction forces could stabilize the system were determined. The results show that energy
losses from the displacement-dependent dry friction damper can be large enough to overcome the destabilizing
effects of negative viscous damping under certain conditions.

It was found that there is a significant qualitative difference between systems without preload and systems
with preload across the frictional interface. The zero-preload case results in a homogeneous system whose
stability is completely characterized by two parameters: Z and d. A stability diagram in Z�d parameter space
was constructed to identify combinations of Z and d that led to stable, unstable, and neutrally stable behavior.
Along the boundary, the origin takes on the characteristics of a center. The boundary of the stable and
unstable domains obtained using an exact analysis was compared against an approximate result from HB and
one obtained using a log-decrement damping approach. It was found that the two approximate techniques
bounded the exact solution, with the HB result being more conservative. It was found that when the negative
viscous damping is sufficiently low, global stability can be attained through the proper selection of the dry
friction damper parameters.

In the case of systems with preload acting across the frictional interface, it was possible in most cases to
create a region surrounding the origin in which all initial conditions gave rise to bounded response. In general,
the trajectories originating in the stable domain terminated in a sticking zone containing the origin; in special
cases, this zone of equilibria disappears and the origin becomes locally asymptotically stable. Surrounding this
stable domain, an unstable limit cycle exists forming a bounding orbit; initial conditions chosen outside of this
bounding orbit give rise to unbounded response. The influence of various system parameters on the size and
shape of the bounding orbit was investigated. It was found that for certain values of the system parameters,
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the amplitude of the bounding orbit became infinite, implying globally stable behavior. The exact conditions
under which this occurs were derived using the zero-preload solution.
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